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 A B S T R A C T

This work uses machine learning (ML) to complement HEAT (Heat flux Engineering Analysis Toolkit) by 
developing 3-D footprint surrogate models for fast and accurate heat load calculations in the divertor of the 
SPARC tokamak. The focus is on shadowed regions, or magnetic shadows, caused by the 3-D geometry of 
plasma-facing components (PFCs). ML classifiers are employed to create a surrogate model for HEAT generated 
shadow masks, predicting these shadow masks and divertor heat flux profiles based on a diverse range of 
equilibria and only the plasma current, safety factor(q95) at the edge, and magnetic flux angles as input 
parameters. The ultimate goal is to integrate the model for real-time control and future operational decisions.
1. Introduction

The handling of power exhaust continues to be a critical challenge 
for the next generation of fusion devices, which requires innovative so-
lutions in divertor design and operation. Recently significant advances 
in the application of Machine Learning (ML) for heat flux estimation 
and real-time control have happened. For instance, the WEST team has 
employed physics-constrained deep neural networks to extract divertor 
hot-spot features in real time [1,2], and similar ML approaches have 
been successfully applied at Wendelstein 7-X to reconstruct heat load 
patterns on plasma-facing components [3–5]. Moreover, ML-driven 
real-time control has been demonstrated in experiments like TCV [6] 
and DIII-D [7], stressing out the potential of these techniques for 
plasma stabilization and divertor protection.

High-power systems like SPARC [8] demand precise and efficient 
numerical tools to simulate heat fluxes on complex plasma-facing com-
ponent (PFC) geometries, both for design and future operations. Codes 
to simulate divertor heat loads can be compute intensive (e.g. the XGC 
code [9] runs for hours on massively parallel HPC systems). The HEAT 
code [10] was developed to provide rapid calculations of divertor heat 
loads for engineering design considerations. While much faster than 
other alternatives, a typical HEAT simulation requires on the order 
of 10 min for a single simulation, with the field-line tracing and ray-
triangle intersection checking to determine shadowed regions (‘‘shadow 
mask’’) of the divertor being the bottleneck.
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This work presents the development, results, and applications of a 
machine learning-based surrogate model for the HEAT code, specifi-
cally tailored for SPARC. Through collaboration among research groups 
and the use of high-performance computing (HPC), a robust database 
of magnetic equilibrium and corresponding HEAT simulations was 
constructed to train the machine learning model. This surrogate sig-
nificantly accelerates HEAT computations, from tens of minutes to 
sub-seconds, enabling the possibility of real-time or between-discharge 
applications for divertor protection and control actions.

2. SPARC tokamak and its divertor

The SPARC tokamak is a device under construction and will be 
operational with its first plasma scheduled for 2026. It is designed as 
a high field (𝐵0 = 12.2 T), compact (𝑅0 = 1.85 m), superconducting, 
D-T tokamak. The SPARC divertor is toroidally continuous and tightly 
baffled to contain neutral particles in the divertor volume. SPARC is 
being designed to withstand the divertor heat flux in a full-power 
discharge (10 s flat top) with a single null plasma (although double-
null operation is also planned) via impurity seeding and strike point 
sweeping [8].

The divertor of any fusion reactor must be designed to exhaust the 
heating power with acceptable loads on the plasma facing components 
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Fig. 1. HEAT code schematic illustrating the Shadow Mask calculation in the Heat Flux Simulator block, now featuring options to execute in either Normal or ML mode.
 

(PFC’s) [11]. Studies in the last decades have shown that the ther-
mal power loads relevant to a fusion reactor are about an order of 
magnitude more than the power handling capabilities of the standard 
divertor as the transition from closed to open field lines concentrates 
the heat flux [12]. From the point of view of power exhaust SPARC 
is characterized by the expected divertor parallel heat flux peaks that 
could be as big as 10GW∕m2 [13–15].

3. The HEAT code and database creation

The HEAT code is a software package designed for the analysis 
of PFCs by calculating surface heat fluxes with high precision in 3D 
geometry [10]. It integrates magnetohydrodynamic (MHD) equilibrium 
and divertor physics with engineering computer-aided design (CAD) 
models to solve for surface heat fluxes and temperatures across the 
PFCs. A key functionality of HEAT is the identification of magnetic 
shadows—regions shielded from the incident heat flux due to the 
intricate 3D geometry of the PFCs.

The identification of magnetic shadows is essential for accurately 
modeling heat flux distribution across PFC’s. To represent these shielded
regions, HEAT generates a shadow mask, a binary classification of 
surface points that cannot receive incident heat flux due to upstream 
obstructions in the 3D geometry. This process, known as ‘‘intersection 
checking’’, traces magnetic field lines from PFC surfaces to determine 
where they intersect other components, marking these shadowed re-
gions. Techniques such as fish scaling leverage this understanding by 
designing upstream tiles to strategically shadow downstream edges, as 
a result mitigating heat flux exposure [16]. A schematic representing 
the structure of how the HEAT code works is shown in Fig.  1, the sub-
module for the Shadow Mask calculation using ML will be explained in 
detail in next sections.

To begin the development of a ML version of the HEAT code, a 
database of approximately 1000 HEAT simulations was generated, 80% 
of the database was used for training and 20% as test cases. These 
runs were based on a set of diverted equilibriums and a divertor CAD 
model representing a 20-degree section of the SPARC tokamak. The 
focus of each simulation was the prediction for a specific ‘‘carrier’’, 
defined as a section of 15 tiles within the region highlighted in Fig. 
2 also known as the region ‘‘Tile-4’’ of the divertor. The power input 
was specified at 20 MW, which leads to an attached divertor peak 
perpendicular heat flux of ∼50MW∕m2 (actual divertor operation will 
be detached, with impurity seeding to radiate power to reach material 
limits of ∼10MW∕m2). The HEAT code was set up to run with a parallel 
heat flux width 𝜆𝑞 = 1.0 mm and heat flux spreading parameter 𝑆 =
1.0 mm. It is important to highlight that the shadow mask, being a 
product of the CAD geometry and the magnetic field configuration, is 
inherently independent of the heat flux spreading parameter (𝑆) and 
the parallel heat flux width (𝜆 ). These parameters primarily influence 
𝑞
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the quantitative magnitude of the heat flux distribution rather than the 
qualitative determination of shadowed regions. Although variations in 
𝑆 and 𝜆𝑞 can affect the overall heat flux error metrics, the focus of 
this work is to isolate the effects of the geometric and magnetic field 
configurations on the shadow mask.

A single HEAT simulation for this geometry took nominally 47 min 
with a trace length equal to 10 degrees and a trace step size of 0.05 
degrees. The database creation process was parallelized using asyn-
chronous MPI on 8 compute nodes with 90 CPUs per node, reducing 
the total runtime for the 1000 HEAT simulations to a few hours. The 
carrier’s mesh resolution in these simulations was set at 1 mm, resulting 
in a Shadow-Mask output of approximately 500,000 geometric points 
for the whole carrier. Note that this same mesh was used for all of the 
simulations, such that the ML model had a fixed mesh to predict for. 
To filter the Shadow-Mask data, a convex hull algorithm was applied to 
identify and define the key changing points on the Shadow-Mask output 
of the carrier [17], giving a total of approximately 70,000 changing 
points. Fig.  2 provides an overview of the divertor structure, the CAD 
model used, and the simulation results, including the Shadow-Mask 
output for the selected carrier.

4. Machine learning shadow mask predictions

This work makes use of machine learning (ML) to develop inter-
pretable and generalizable reduced-order models. Feedforward neural 
networks, also known as multilayer perceptrons (MLPs), are funda-
mental models in deep learning, designed to approximate a target 
function 𝑓 ∗ [18,19]. In the context of this work, the neural network 
defines a mapping 𝑦 = 𝑓 (𝑥; 𝜃), where 𝑥 represents the inputs (such 
as plasma parameters or PFC’s configurations), 𝑦 represents the pre-
dicted results (e.g., shadow mask distributions or heat flux profiles), 
and 𝜃 (comprising the weights and biases of the neurons) are the 
parameters optimized during training. By learning the optimal 𝜃, the 
network serves as a surrogate model, providing accurate and efficient 
approximations of computationally expensive simulations. This capabil-
ity makes feedforward networks particularly valuable for accelerating 
iterative workflows in plasma physics, such as real-time or inter-shot 
predictions for divertor protection and control.

For this model, a deep feedforward neural network (NN) was de-
veloped to generate a surrogate model for the HEAT code, referred 
to as HEAT-ML, for predicting the Shadow Mask in a divertor carrier. 
The inputs selected to train the NN were four equilibrium parameters: 
the plasma current (𝐼𝑝), edge safety factor 𝑞95, and two incident field 
angles, 𝐵𝜃

𝐵𝜙
 (𝛼1 and 𝛼2), at the top and bottom of the carrier. The 

parameters used for training the neural network were chosen from the 
following ranges: plasma current (𝐼𝑝): 𝐼𝑝 ∈ [−3.11,−12] MA, edge safety 
factor (𝑞95): 𝑞95 ∈ [2.4, 6.8], incident angle 1 (𝛼1): 𝛼1 ∈ [0.496, 4.68]
degrees and incident angle 2 (𝛼 ): 𝛼 ∈ [1.31, 8.07] degrees. Fig.  3 
2 2
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Fig. 2. A visual sequence illustrating the divertor structure and simulation results. The first image shows a 20-degree section CAD model of the divertor. The second image 
provides a 360-degree overview of the entire divertor, displaying the region known as ‘‘Tile-4’’. The third image zooms in on a specific region of interest, focusing on 15 tiles 
of the divertor in the ‘‘Tile-4’’ region. The fourth image presents the shadowmask output from the HEAT code, showing the carrier behavior for the selected tiles, orange color 
corresponds to a value of 1 or shadowed and blue color to a value of 0 or non-shadowed.
Fig. 3. (a) Training parameters for the MLP model, and (b) neural network architecture.
shows the architecture of the NN alongside a table summarizing the 
key parameters.

A rapid hyperparameter search was done exploring a small range 
of network architectures. It was found that the configuration with 4 
layers, consisting of a conic or funnel-like shape of 100, 200, 300 and 
400 nodes respectively, provided a robust balance between model per-
formance and computational efficiency. This selection was determined 
within a supervised learning framework.

The model was implemented using PyTorch, a framework well-
suited for deep learning due to its two key advantages: accelerated 
computation on graphical processing units (GPUs) and robust support 
for numerical optimization of mathematical expressions. The use of 
GPUs allowed for parallelized training, reducing the training time 
from 25 min to just 30 s, a 50x speedup compared to CPU-based 
computation. This acceleration was crucial for efficiently handling the 
computational demands of deep learning [20].

In addition to developing the model, ensuring its practical usability 
required careful deployment. This process, as depicted on the right in 
Fig.  4, involved integrating the model where it is needed, whether on 
a plasma control server, in a cloud engine, etc. Such deployment is 
essential to bridge the gap between model development and real-world 
application, enabling the system to perform effectively in its intended 
environment.

The metric used to assess the performance of the NN model was 
the coefficient of determination (𝑅2 = 1 −

∑

𝑖(𝑦𝑖 − �̂�𝑖)2
∑

𝑖(𝑦𝑖 − �̄�)2
, where 𝑦𝑖 the 

true value, �̂�𝑖 the NN prediction, and �̄� the mean value of the 𝑦𝑖’s). 
For this work, 𝑅2 > 0.75 was achieved in 95.7% of the test cases (178 
cases), while 𝑅2 < 0.75 occurred in 4.3% of the test cases (8 cases), 
the general value of the coefficient for the database was of 𝑅2 = 0.955. 
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Table 1
Performance metrics and database split for the MLP model.
 Parameter Value  
 Total simulations (HEAT runs) 930  
 Training cases 744  
 Test (Validation) cases 186  
 General 𝑅2 score 0.955  
 Test cases with 𝑅2 > 0.75 178 (95.7%) 
 Test cases with 𝑅2 < 0.75 8 (4.3%)  

Table  1 summarizes the overall performance metrics and the database 
split, detailing the total number of simulations, the division between 
training and test cases, and the distribution of 𝑅2 scores for the test 
cases.

Figs.  5, 6(b), and 6(a) present examples of the shadow mask pre-
dictions using HEAT-ML. The figure numbering corresponds to the 
equilibrium numbers used to create the database. Fig.  5 illustrates one 
of the best predictions achieved by HEAT-ML. It also includes a close-
up of the region where mismatches in the Shadow-Mask pattern are 
observed. The blue arrows highlight the small red regions where the 
model did not predict correctly. Fig.  6 depicts the cases with the worst 
performance, with 𝑅2 values of 0.6653 and 0.5295. Despite being the 
lowest predictions, the results are not overly poor, as the model, even 
when incorrect, does not allocate heat flux to physically impossible 
locations, such as the side of a tile. As shown in all the figures, a plot 
of the corresponding equilibrium is displayed on the right side of each. 
Based on the parameters of these two cases, which are not at the edges 
of the range of the parameter sets, it is not obvious why the ML model 
performs poorly for these shots, and is under further investigation.
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Fig. 4. Basic structure of a PyTorch project with data loading, training and deployment to production.
Fig. 5. Combined view of the shadow mask prediction and a zoomed-in detail for Equilibrium #92. The blue arrows in the bottom image indicate the small regions where the 
prediction algorithm made incorrect predictions.
5. Shadow mask calculation implementation and heat flux estima-
tion results

After training the neural network and obtaining its optimal param-
eters (weights and biases), this trained model was integrated into the 
HEAT code as an optional module for the Shadow Mask calculation. 
This integration enables the HEAT code to use the neural network 
directly during execution for Shadow Mask calculations, then using the 
existing HEAT code infrastructure for the heat flux computation.

The runtime for the entire HEAT code using the ML version for the 
Shadow Mask calculation process is of approximately 90 s. This timing 
is primarily attributed to overhead and file I/O operations, as the NN 
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predictions themselves take only a few milliseconds. The heat flux 
prediction results for the analyzed equilibriums are presented in Fig. 
7. Specifically, Fig.  7(a) corresponds to 𝑅2 = 0.9992, Fig.  7(b) to 𝑅2 =
0.6653, and Fig.  7(c) to 𝑅2 = 0.5295. A small plot of each equilibrium 
is displayed in the middle of the corresponding carrier 3D plots. The 
general RMSE score is equal to 3.352 MW∕m2 calculated as 𝑅𝑀𝑆𝐸 =
√

1
𝑛
∑𝑛

𝑖=1
(

𝑦pred,𝑖 − 𝑦true,𝑖
)2 where 𝑦pred,𝑖 corresponds to the heat flux 

value calculated by HEAT using the ML Shadow-mask option and 𝑦true,𝑖. 
corresponds to the heat flux value calculated normally. For the specific 
cases analyzed in this work, they have RMSE values of 0.45, 8.85 
and 5.66 MW∕m2 respectively. Given that the peak perpendicular heat 
flux in a full-power attached divertor is approximately of 50 MW/m2, 
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Fig. 6. Shadow mask comparison for Equilibrium #44 and Equilibrium #213. In the images on the right, the red regions indicate where the prediction did not succeed.
the overall RMSE of 3.352 MW/m2 corresponds to a relative error of 
roughly 6.7%.

6. Applications and future work

Its important to point out the applications and some of the lim-
itations of the current ML surrogate model. Due to the fixed mesh 
used, the current ML surrogate model cannot be quickly adapted to 
new divertor geometries (a new database of HEAT runs would need 
to be created, which is manageable on the 45 min time frame, but 
not for making topological optimization). For fixed divertor geometry, 
using the ML-HEAT model can produce divertor heatload maps in 
milliseconds (when stripping out the overhead due to file I/O, setup 
time, etc.). The primary application then of these ML surrogate models 
for the HEAT code is to enable real-time or between-discharge divertor 
protection, allowing for closed-loop feedback control to protect the 
divertor from potential damage or excessive stress and quicker between 
shot decision-making and scenario planning. The implementation of 
the ML surrogate model into the SPARC plasma control system is 
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under discussion. Although the current work focuses on accelerating 
the HEAT code using ML, the approach is inherently modular and 
can be extended in the future. In particular, potential extensions may 
include coupling ML-based analysis with infrared (IR) diagnostics for 
real-time heat flux estimation. Such integration remains as another 
possible direction for further research and could enhance the overall 
diagnostic and control capabilities.

Future work will also focus on improving the generalization of 
the predictions, making sure they are not limited to specific PFC’s. 
Advanced ML techniques for learning on generic meshes will be ex-
plored (e.g. MeshGraphNet [21], Geo-FNO [22], etc.). However, the 
bottleneck in the 2-D axisymmetric HEAT simulations is not in the field-
line tracing solver, but rather in the collision detection algorithm used 
to determine when field lines intersect CAD geometries. ML techniques 
for solving the field-line tracing ODE but also to accelerate collision 
detection can potentially learn a more flexible model, useful for real-
time control and between-discharge divertor protection, but also for 
divertor design.
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Fig. 7. Comparison of heat flux predictions with the use of ML in the HEAT code. The code was configured with the parameters of parallel heat flux width 𝜆𝑞 = 1.0 mm, heat 
flux spreading parameter 𝑆 = 1.0 mm and the power crossing the separatrix into the SOL 𝑃𝑆𝑂𝐿 = 20 MW.
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